• sitemap

Государственное учреждение «Республиканский центр по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды» Минприроды Республики Беларусь
РАДИАЦИОННО - ЭКОЛОГИЧЕСКИЙ МОНИТОРИНГ

 

 2024 год объявлен Годом качества в Беларуси

 

 

Часто задаваемые вопросы

1.1. Что такое радиоактивность и радиация?

Радиоактивность - неустойчивость ядер некоторых атомов, проявляющаяся в их способности к самопроизвольным превращениям (распаду), сопровождающимся испусканием ионизирующего излучения или радиацией. Далее мы будем говорить лишь о той радиации, которая связана с радиоактивностью.

Радиация, или ионизирующее излучение - это частицы и гамма-кванты, энергия которых достаточно велика, чтобы при воздействии на вещество создавать ионы разных знаков. Радиацию нельзя вызвать с помощью химических реакций.


 

1.2. Какая бывает радиация?

 

Различают несколько видов радиации.

Альфа-частицы: относительно тяжелые, положительно заряженные частицы, представляющие собой ядра гелия.

Бета-частицы - это просто электроны.

Гамма-излучение имеет ту же электромагнитную природу, что и видимый свет, однако обладает гораздо большей проникающей способностью.

Нейтроны - электрически нейтральные частицы, возникают главным образом непосредственно вблизи работающего атомного реактора, куда доступ, естественно, регламентирован.

Рентгеновское излучение подобно гамма-излучению, но имеет меньшую энергию. Кстати, наше Солнце - один из естественных источников рентгеновского излучения, но земная атмосфера обеспечивает от него надежную защиту.

Ультрафиолетовое излучение и излучение лазеров в нашем рассмотрении не являются радиацией.

Заряженные частицы очень сильно взаимодействуют с веществом, поэтому, с одной стороны, даже одна альфа-частица при попадании в живой организм может уничтожить или повредить очень много клеток, но, с другой стороны, по той же причине, достаточной защитой от альфа- и бета-излучения является любой, даже очень тонкий слой твердого или жидкого вещества - например, обычная одежда (если, конечно, источник излучения находится снаружи).

Следует различать радиоактивность и радиацию. Источники радиации - радиоактивные вещества или ядерно-технические установки (реакторы, ускорители, рентгеновское оборудование и т.п.) - могут существовать значительное время, а радиация существует лишь до момента своего поглощения в каком-либо веществе.


 

1.3. К чему может привести воздействие радиации на человека?

Воздействие радиации на человека называют облучением. Основу этого воздействия составляет передача энергии радиации клеткам организма.

Облучение может вызвать нарушения обмена веществ, инфекционные осложнения, лейкоз и злокачественные опухоли, лучевое бесплодие, лучевую катаракту, лучевой ожог, лучевую болезнь.

Последствия облучения сильнее сказываются на делящихся клетках, и поэтому для детей облучение гораздо опаснее, чем для взрослых.

Что же касается часто упоминаемых генетических (т.е. передаваемых по наследству) мутаций как следствие облучения человека, то таковых еще ни разу не удалось обнаружить. Даже у 78000 детей тех японцев, которые пережили атомную бомбардировку Хиросимы и Нагасаки, не было констатировано какого-либо увеличения числа случаев наследственных болезней (книга "Жизнь после Чернобыля" шведских ученых С.Кулландера и Б.Ларсона).

Следует помнить, что гораздо больший РЕАЛЬНЫЙ ущерб здоровью людей приносят выбросы предприятий химической и сталелитейной промышленности, не говоря уже о том, что науке пока неизвестен механизм злокачественного перерождения тканей от внешних воздействий.


 

1.4. Как радиация может попасть в организм?

 

Организм человека реагирует на радиацию, а не на ее источник.

Те источники радиации, которыми являются радиоактивные вещества, могут проникать в организм с пищей и водой (через кишечник), через легкие (при дыхании) и, в незначительной степени, через кожу, а также при медицинской радиоизотопной диагностике. В этом случае говорят о внутреннем обучении.

Кроме того, человек может подвергнуться внешнему облучению от источника радиации, который находится вне его тела.

Внутреннее облучение значительно опаснее внешнего.


 

1.5. Передается ли радиация как болезнь?

 

Радиацию создают радиоактивные вещества или специально сконструированное оборудование. Сама же радиация, воздействуя на организм, не образует в нем радиоактивных веществ, и не превращает его в новый источник радиации. Таким образом, человек не становится радиоактивным после рентгеновского или флюорографического обследования. Кстати, и рентгеновский снимок (пленка) также не несет в себе радиоактивности.

Исключением является ситуация, при которой в организм намеренно вводятся радиоактивные препараты (например, при радиоизотопном обследовании щитовидной железы), и человек на небольшое время становится источником радиации. Однако препараты такого рода специально выбираются так, чтобы быстро терять свою радиоактивность за счет распада, и интенсивность радиации быстро спадает.

Конечно, можно «испачкать» тело или одежду радиоактивной жидкостью, порошком или пылью. Тогда некоторая часть такой радиоактивной «грязи» - вместе с обычной грязью - может быть передана при контакте другому человеку. В отличие от болезни, которая, передаваясь от человека к человеку, воспроизводит свою вредоносную силу (и даже может привести к эпидемии), передача грязи приводит к ее быстрому разбавлению до безопасных пределов.


 

1.6. В каких единицах измеряется радиоактивность?

Мерой радиоактивности служит активность. Измеряется в Беккерелях (Бк), что соответствует 1 распаду в секунду. Содержание активности в веществе часто оценивают на единицу веса вещества (Бк/кг) или объема (Бк/куб.м).

Также встречается еще такая единица активности, как Кюри (Ки). Это - огромная величина: 1 Ки = 37000000000 Бк.

Активность радиоактивного источника характеризует его мощность. Так, в источнике активностью 1 Кюри происходит 37000000000 распадов в секунду.

Как было сказано выше, при этих распадах источник испускает ионизирующее излучения. Мерой ионизационного воздействия этого излучения на вещество является экспозиционная доза. Часто измеряется в Рентгенах (Р). Поскольку 1 Рентген - довольно большая величина, на практике удобнее пользоваться миллионной (мкР) или тысячной (мР) долями Рентгена.

Действие распространенных бытовых дозиметров основано на измерении ионизации за определенное время, то есть мощности экспозиционной дозы. Единица измерения мощности экспозиционной дозы - микроРентген/час.

Мощность дозы, умноженная на время, называется дозой. Мощность дозы и доза соотносятся так же как скорость автомобиля и пройденное этим автомобилем расстояние (путь).

Для оценки воздействия на организм человека используются понятия эквивалентная доза и мощность эквивалентной дозы. Измеряются, соответственно, в Зивертах (Зв) и Зивертах/час. В быту можно считать, что 1 Зиверт = 100 Рентген. Необходимо указывать на какой орган, часть или все тело пришлась данная доза.

Можно показать, что упомянутый выше точечный источник активностью 1 Кюри (для определенности рассматриваем источник цезий-137) на расстоянии 1 метр от себя создает мощность экспозиционной дозы приблизительно 0,3 Рентгена/час, а на расстоянии 10 метров - приблизительно 0,003 Рентгена/час. Уменьшение мощности дозы с увеличением расстояния от источника происходит всегда и обусловлено законами распространения излучения.

Теперь абсолютно понятна типичная ошибка средств массовой информации, сообщающих: «Сегодня на такой-то улице обнаружен радиоактивный источник в 10 тысяч рентген при норме 20».

Во-первых, в Рентгенах измеряется доза, а характеристикой источника является его активность. Источник в столько-то Рентген - это то же самое, что мешок картошки весом в столько-то минут.

Поэтому в любом случае речь может идти только о мощности дозы от источника. И не просто мощности дозы, а с указанием того, на каком расстоянии от источника эта мощность дозы измерена.

Далее можно высказать следующие соображения. 10 тысяч рентген/час - достаточно большая величина. С дозиметром в руках ее вряд ли можно измерить, так как при приближении к источнику дозиметр прежде покажет и 100 Рентген/час, и 1000 Рентген/час! Весьма трудно предположить, что дозиметрист продолжит приближаться к источнику. Поскольку дозиметры измеряют мощность дозы в микроРентгенах/час, то можно предполагать, что и в данном случае речь идет о 10 тысяч микроРентген/час = 10 миллиРентген/час = 0,01 Рентгена/час. Подобные источники, хотя и не представляют смертельной опасности, на улице попадаются реже, чем сторублевые купюры, и это может быть темой для информационного сообщения. Тем более что упоминание о "норме 20" можно понимать как условную верхнюю границу обычных показаний дозиметра в городе, т.е. до 20 микроРентген/час.

Поэтому правильно сообщение, по-видимому, должно выглядеть так: «Сегодня на такой-то улице обнаружен радиоактивный источник, вплотную к которому дозиметр показывает 10 тысяч микрорентген в час, при том что среднее значение радиационного фона в нашем городе не превосходит 20 микрорентген в час».


 

1.7. Что такое изотопы?

 

В таблице Менделеева более 100 химических элементов. Почти каждый из них представлен смесью стабильных и радиоактивных атомов, которые называют изотопами данного элемента. Известно около 2000 изотопов, из которых около 300 - стабильные.

Например, у первого элемента таблицы Менделеева - водорода - существуют следующие изотопы:

- водород Н-1 (стабильный),

- дейтерий Н-2 (стабильный),

- тритий Н-3 (радиоактивный, период полураспада 12 лет).

Радиоактивные изотопы обычно называют радионуклидами.


 

1.8. Что такое период полураспада?

Число радиоактивных ядер одного типа постоянно уменьшается во времени благодаря их распаду.

Скорость распада принято характеризовать периодом полураспада: это время, за которое число радиоактивных ядер определенного типа уменьшится в 2 раза.

Абсолютно ошибочной является следующая трактовка понятия "период полураспада": "если радиоактивное вещество имеет период полураспада 1 час, это значит, что через 1 час распадется его первая половина, а еще через 1 час - вторая половина, и это вещество полностью исчезнет (распадется)".

Для радионуклида с периодом полураспада 1 час это означает, что через 1 час его количество станет меньше первоначального в 2 раза, через 2 часа - в 4, через 3 часа - в 8 раз и т.д., но полностью не исчезнет никогда. В такой же пропорции будет уменьшается и радиация, излучаемая этим веществом. Поэтому можно прогнозировать радиационную обстановку на будущее, если знать, какие и в каком количестве радиоактивные вещества создают радиацию в данном месте в данный момент времени.

У каждого радионуклида - свой период полураспада, он может составлять как доли секунды, так и миллиарды лет. Важно, что период полураспада данного радионуклида постоянен, и изменить его невозможно.

Образующиеся при радиоактивном распаде ядра, в свою очередь, также могут быть радиоактивными. Так, например, радиоактивный радон-222 обязан своим происхождением радиоактивному урану-238.

Иногда встречаются утверждения, что радиоактивные отходы в хранилищах полностью распадутся за 300 лет. Это не так. Просто это время составит примерно 10 периодов полураспада цезия-137, одного из самых распространенных техногенных радионуклидов, и за 300 лет его радиоактивность в отходах снизится почти в 1000 раз, но, к сожалению, не исчезнет.


 

1.9 Что вокруг нас радиоактивно?

Воздействие на человека тех или иных источников радиации поможет оценить следующая диаграмма (по данным А.Г.Зеленкова, 1990).

 

 

 

По происхождению радиоактивность делят на естественную (природную) и техногенную.

а) Естественная радиоактивность

Естественная радиоактивность существует миллиарды лет, она присутствует буквально повсюду. Ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли. Радиоактивные материалы вошли в состав Земли с самого ее рождения. Любой человек слегка радиоактивен: в тканях человеческого тела одним из главных источников природной радиации являются калий-40 и рубидий-87, причем не существует способа от них избавиться.

Учтем, что современный человек до 80% времени проводит в помещениях - дома или на работе, где и получает основную дозу радиации: хотя здания защищают от излучений извне, в стройматериалах, из которых они построены, содержится природная радиоактивность. Существенный вклад в облучение человека вносит радон и продукты его распада.

б) Радон

Основным источником этого радиоактивного инертного газа является земная кора. Проникая через трещины и щели в фундаменте, полу и стенах, радон задерживается в помещениях. Другой источник радона в помещении - это сами строительные материалы (бетон, кирпич и т.д.), содержащие естественные радионуклиды, которые являются источником радона. Радон может поступать в дома также с водой (особенно если она подается из артезианских скважин), при сжигании природного газа и т.д.

Радон в 7,5 раз тяжелее воздуха. Как следствие, концентрация радона в верхних этажах многоэтажных домов обычно ниже, чем на первом этаже.

Основную часть дозы облучения от радона человек получает, находясь в закрытом, непроветриваемом помещении; регулярное проветривание может снизить концентрацию радона в несколько раз.

При длительном поступлении радона и его продуктов в организм человека многократно возрастает риск возникновения рака легких.

Сравнить мощность излучения различных источников радона поможет следующая диаграмма.

в) Техногенная радиоактивность

Техногенная радиоактивность возникает вследствие человеческой деятельности.

Осознанная хозяйственная деятельность, в процессе которой происходит перераспределение и концентрирование естественных радионуклидов, приводит к заметным изменениям естественного радиационного фона. Сюда относится добыча и сжигание каменного угля, нефти, газа, других горючих ископаемых, использование фосфатных удобрений, добыча и переработка руд.

Так, например, исследования нефтепромыслов на территории России показывают значительное превышение допустимых норм радиоактивности, повышение уровней радиации в районе скважин, вызванное отложением на оборудовании и прилегающем грунте солей радия-226, тория-232 и калия-40. Особенно загрязнены действующие и отработавшие трубы, которые нередко приходится классифицировать как радиоактивные отходы.

Такой вид транспорта, как гражданская авиация, подвергает своих пассажиров повышенному воздействию космического излучения.

И, конечно, свой вклад дают испытания ядерного оружия, предприятия атомной энергетики и промышленности.

Безусловно, возможно и случайное (неконтролируемое) распространение радиоактивных источников: аварии, потери, хищения, распыление и т.п. Таки ситуации, к счастью, ОЧЕНЬ РЕДКИ. Кроме того, их опасность не следует преувеличивать.


 

1.10. Является ли компьютер источником радиации?

 

Единственной частью компьютера, в отношении которой можно говорить о радиации, являются только мониторы на электронно-лучевых трубках (ЭЛТ); дисплеев других типов (жидкокристаллических, плазменных и т.п.) это не касается.

Мониторы, наряду с обычными телевизорами на ЭЛТ, можно считать слабым источником рентгеновского излучения, возникающим на внутренней поверхности стекла экрана ЭЛТ. Однако благодаря большой толщине этого же стекла, оно же и поглощает значительную часть излучения. До настоящего времени не обнаружено никакого влияния рентгеновского излучения мониторов на ЭЛТ на здоровье, тем не менее все современные ЭЛТ выпускаются с условно безопасным уровнем рентгеновского излучения.

В настоящее время в отношении мониторов общепризнанными для всех производителей являются шведские национальные стандарты «MPR II», «TCO-92», -95, -99. Эти стандарты, в частности, регламентируют электрические и магнитные поля от мониторов.

Что касается термина «low radiation» («низкий уровень излучения»), то это не стандарт, а всего лишь декларация изготовителя о том, что он предпринял нечто, лишь ему известное, с тем чтобы уменьшить излучение. Аналогичный смысл имеет менее распространенный термин «low emission».


 

1.11. Что такое "нормальный радиационный фон" или "нормальный уровень радиации"?

 

Для конкретной местности не существует "нормального фона" как постоянной характеристики, его нельзя получить как результат небольшого числа измерений.

В любом месте, даже для неосвоенных территорий, где "не ступала нога человека", радиационный фон изменяется от точки к точке, а также в каждой конкретной точке со временем. Эти колебания фона могут быть весьма значительными. В обжитых местах дополнительно накладываются факторы деятельности предприятий, работы транспорта и т.д. Например, на аэродромах, благодаря высококачественному бетонному покрытию с гранитным щебнем, фон, как правило, выше, чем на прилегающей местности.

Измерения радиационного фона в городе Минске позволяют указать ТИПИЧНЫЕ значение фона на улице (открытой местности) - 8 - 12 мкР/час, в помещении - 15 - 20 мкР/час.


 

1.12. Как защититься от радиации? Помогает ли от радиации алкоголь?

 

От источника радиации защищаются временем, расстоянием и веществом.

Временем - вследствие того, что чем меньше время пребывания вблизи источника радиации, тем меньше полученная от него доза облучения.

Расстоянием - благодаря тому, что излучение уменьшается с удалением от компактного источника (пропорционально квадрату расстояния). Если на расстоянии 1 метр от источника радиации дозиметр фиксирует 1000 мкР/час, то уже на расстоянии 5 метров показания снизятся приблизительно до 40 мкР/час.

Веществом - необходимо стремиться, чтобы между Вами и источником радиации оказалось как можно больше вещества: чем его больше и чем оно плотнее, тем большую часть радиации оно поглотит.

Что касается главного источника облучения в помещениях - радона и продуктов его распада, то регулярное проветривание позволяет значительно уменьшить их вклад в дозовую нагрузку.

Кроме того, если речь идет о строительстве или отделке собственного жилья, которое, вероятно, прослужит не одному поколению, следует постараться купить радиационно безопасные стройматериалы - благо их ассортимент ныне чрезвычайно богат.

Алкоголь, принятый незадолго до облучения, в некоторой степени способен ослабить последствия облучения. Однако его защитное действие уступает современным противорадиационным препаратам.


 

1.13. Что измеряет и чего не измеряет дозиметр?

Дозиметр измеряет мощность дозы ионизирующего излучения непосредственно в том месте, где он находится. Основное предназначение бытового дозиметра - измерение мощности дозы в том месте, где этот дозиметр находится (в руках человека, на грунте и т.д.) и проверка тем самым на радиоактивность подозрительных предметов. Однако скорее всего, Вам удастся заметить только достаточно серьезные повышения мощности дозы.

Поэтому индивидуальный дозиметр поможет прежде всего тем, кто часто бывает в районах, загрязненных в результате аварии на ЧАЭС (как правило, все эти места хорошо известны).

Кроме того, такой прибор может быть полезен в незнакомой удаленной от цивилизации местности (на пример при сборе ягод и грибов в достаточно "диких" местах), при выборе места для строительства дома, для предварительной проверки привозного грунта при ландшафтном благоустройстве. Повторим, однако, что в этих случаях полезен он будет только при весьма существенных радиоактивных загрязнениях, которые встречаются нечасто.

Не очень сильные, но тем не менее небезопасные загрязнения бытовым дозиметром обнаружить очень трудно. Для этого нужны совершенно другие методы, которые могут использовать только специалисты.

Относительно возможности проверять с помощью бытового дозиметра соответствие радиационных параметров установленным нормам можно сказать следующее.

Дозовые показатели (мощность дозы в помещениях, мощность дозы на местности) для отдельных точек проверить можно. Однако бытовым дозиметром очень трудно обследовать все помещение и добиться уверенности в том, что не пропущен локальный источник радиоактивности.

Почти бесполезно пытаться измерять радиоактивность продуктов питания или стройматериалов с помощью бытового дозиметра. Дозиметр способен выявить разве что ОЧЕНЬ СИЛЬНО загрязненные продукты или строительные материалы, содержание радиоактивности в которых в десятки раз превосходит допустимые нормы. Напомним, что для продуктов и строительных материалов нормируется не мощность дозы, а содержание радионуклидов, а дозиметр принципиально не позволяет измерять этот параметр. Здесь опять же нужны другие методы и работа специалистов.


 

1.14 Как правильно пользоваться дозиметром?

 

Следует пользоваться дозиметром в соответствии с прилагаемой к нему инструкцией.

Также необходимо учитывать, что при любых измерениях радиации присутствует естественный радиационный фон. Поэтому сначала выполняют измерение дозиметром уровня фона, характерного для данного участка местности (на достаточном удалении от предполагаемого источника радиации), после чего выполняют измерения уже в присутствии предполагаемого источника радиации. Наличие устойчивого превышения над уровнем фона может свидетельствовать об обнаружении радиоактивности.

В том, что показания дозиметра в квартире больше в 1,5 - 2 раза, чем на улице, нет ничего необычного.

Кроме того, необходимо учитывать, что при измерениях на "уровне фона" в одном и том же месте прибор может показать, например, 8, 15 и 10 мкР/час. Поэтому для получения достоверного результата рекомендуют провести несколько измерений и затем вычислить среднее арифметическое. В нашем примере среднее составит (8+15+10)/3 = 11 мкР/час.


 

1.15 Какие бывают дозиметры?

 

В продаже можно встретить как бытовые, так и профессиональные дозиметры. Последние имеют целый ряд принципиальных преимуществ. Однако, эти приборы весьма дороги (в десять и более раз дороже бытового дозиметра), а ситуации, когда эти преимущества могут быть реализованы, крайне редки в быту. Поэтому приобретать надо бытовой дозиметр.

Особо следует сказать о радиометрах для измерения активности радона: хотя они бывают только в профессиональном исполнении, но их использование в быту может быть оправданным.

Подавляющее большинство дозиметров являются прямопоказывающими, т.е. с их помощью можно получить результат сразу после измерения. Существуют и непрямопоказывающие дозиметры, не имеющие никаких устройств питания и индикации, исключительно компактные (часто в виде брелока). Их предназначение - индивидуальный дозиметрический контроль на радиационно-опасных объектах и в медицине. Поскольку провести перезарядку такого дозиметра или считать его показания можно только с помощью специальной стационарной аппаратуры, его нельзя использовать для принятия оперативных решений.

Дозиметры бывают беспороговые и пороговые. Последние позволяют обнаружить только превышение предустановленного изготовителем нормативного уровня радиации по принципу "да-нет" и благодаря этому просты и надежны в эксплуатации, стоят дешевле беспороговых примерно в 1,5 - 2 раза.

Как правило, беспороговые дозиметры можно эксплуатировать и в пороговом режиме.

Бытовые дозиметры в основном различаются по следующим параметрам:

типы регистрируемых излучений - только гамма, или гамма и бета;

тип блока детектирования - газоразрядный счетчик (также известен как счетчик Гейгера) или сцинтилляционный кристалл/пластмасса; количество газоразрядных счетчиков варьируется от 1 до 4-х;

размещение блока детектирования - выносной или встроенный;

наличие цифрового и/или звукового индикатора;

время одного измерения - от 3 до 40 секунд;

наличие тех или иных режимов измерения и самодиагностики;

габариты и вес;

цена, в зависимости от комбинации вышеперечисленных параметров.


 

1.16 Что делать, если дозиметр "зашкаливает" или его показания необычно большие?

 

1. Убедиться, что при удалении дозиметра от того места, где его "зашкаливает", показания прибора приходят в норму.

2. Убедиться, что дозиметр исправен (большинство приборов такого рода имеют специальный режим самодиагностики).

3. Нормальную работоспособность электрической схемы дозиметра могут частично или полностью нарушать замыкания, протечки батареек, сильные внешние электромагнитные поля. Если есть возможность, желательно продублировать измерения с помощью другого дозиметра, желательно другого типа.

Если же вы уверены, что обнаружили источник или участок радиоактивного загрязнения, НИ В КОЕМ СЛУЧАЕ не следует пытаться самостоятельно избавиться от него (выбросить, закопать или спрятать).

Следует как-то обозначить место своей находки, и обязательно сообщить о ней службам, в чьи обязанности входит обнаружение, идентификация и захоронение бесхозных радиоактивных источников.

Информация подготовлена по материалам www.radiation.ru

 

1.17 Какой уровень радиоактивного загрязнения в Могилёвской области?

 

В соответствии с Постановлением Совета Министров Республики Беларусь от 08 февраля 2021 г. № 75 в Могилевской области 660 населенных пунктов относятся к зонам радиоактивного загрязнения, в том числе:

589 населенных пунктов – зона проживания с периодическим радиационным контролем (территория с плотностью загрязнения почв цезием-137 от 1 до 5 Ки/кв. км либо стронцием-90 от 0,15 до 0,5 Ки/кв. км или плутонием-238, 239, 240 от 0,01 до 0,02 Ки/кв. км, где среднегодовая эффективная доза облучения населения не должна превышать 1 мЗв в год);

69 населенных пунктов – зона с правом на отселение (территория с плотностью загрязнения почв цезием-137 от 5 до 15 Ки/кв. км либо стронцием-90 от 0,5 до 2 Ки/кв. км или плутонием-238, 239, 240 от 0,02 до 0,05 Ки/кв. км, на которых среднегодовая эффективная доза облучения населения может превысить (над естественным и техногенным фоном) 1 мЗв в год, и другие территории с меньшей плотностью загрязнения вышеуказанными радионуклидами, где среднегодовая эффективная доза облучения населения может превысить 1 мЗв в год);

2 населенных пункта – зона последующего отселения (территория с плотностью загрязнения почв цезием-137 от 15 до 40 Ки/кв. км либо стронцием-90 от 2 до 3 Ки/кв. км или плутонием-238, 239, 240 от 0,05 до 0,1 Ки/кв. км, на которых среднегодовая эффективная доза облучения населения может превысить (над естественным и техногенным фоном) 5 мЗв в год, и другие территории с меньшей плотностью загрязнения вышеуказанными радионуклидами, где среднегодовая эффективная доза облучения населения может превысить 5 мЗв в год).

Комментарии

Вы можете оставить свой комментарий только после авторизации.

Перевести страницу

Сеть наблюдений

Схема размещения пунктов радиационного мониторинга
picture
picture
Схема размещения пунктов мониторинга атмосферного воздуха

Белгидромет: радиационная обстановка в Беларуси остается в норме

9 января в Национальном пресс-центре Республики Беларусь состоялась пресс-конференция на тему: «Анализ погодных условий, сложившихся на территории Республики Беларусь в 2024 году. Результаты мониторинга атмосферного воздуха, поверхностных вод, почвы,...

РАДИАЦИОННАЯ ОБСТАНОВКА НА ТЕРРИТОРИИ РЕСПУБЛИКИ БЕЛАРУСЬ на 9 января 2025 г.

По данным Республиканского центра по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды радиационная обстановка в республике остается без изменений. По состоянию на 9 января 2025 г. уровни мощности дозы гамма–излучения в...

РАДИАЦИОННАЯ ОБСТАНОВКА НА ТЕРРИТОРИИ РЕСПУБЛИКИ БЕЛАРУСЬ на 3 января 2025 г.

По данным Республиканского центра по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды радиационная обстановка в республике остается без изменений. По состоянию на 3 января 2025 г. уровни мощности дозы гамма–излучения в...

РАДИАЦИОННАЯ ОБСТАНОВКА НА ТЕРРИТОРИИ РЕСПУБЛИКИ БЕЛАРУСЬ на 26 декабря 2024 г.

По данным Республиканского центра по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды радиационная обстановка в республике остается без изменений. По состоянию на 26 декабря 2024 г. уровни мощности дозы гамма–излучения в...

РАДИАЦИОННАЯ ОБСТАНОВКА НА ТЕРРИТОРИИ РЕСПУБЛИКИ БЕЛАРУСЬ на 19 декабря 2024 г.

По данным Республиканского центра по гидрометеорологии, контролю радиоактивного загрязнения и мониторингу окружающей среды радиационная обстановка в республике остается без изменений. По состоянию на 19 декабря 2024 г. уровни мощности дозы гамма–излучения в...

Ссылки

Официальный сайт Президента Республики Беларусь

Официальный сайт Президента Республики Беларусь

Министерство природных ресурсов и охраны окруж. среды

Министерство природных ресурсов и охраны окруж. среды

Белгидромет

Белгидромет

Белгидромет. Сайт pogoda.by

Белгидромет. Сайт pogoda.by

Административные процедуры для юридических лиц и индивидуальных предпринимателей

Административные процедуры для юридических лиц и индивидуальных предпринимателей

30 лет Национальной системе мониторинга окружающей среды Республики Беларусь

30 лет Национальной системе мониторинга окружающей среды Республики Беларусь